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Motivation for using FRG

» FRG is a general method for finding the effective
action of a system.

> RG idea: gradual momentum integration

- If a theory is defined at high energy scale it is possible
to calculate low energy effective quantities which
includes quantum fluctuations.

> Investigation of phase transitions

» Using FRG methods at finite temperature it is
possible to calculate equation of state which
include quantum effects.

- Go beyond mean-field approximation
- Find tools for FRG calculations suited for Compact Stars
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Introduction to FRG-I

» Generating Functional+ Regulator

> The regualtos acts as a mass term and suppresses fluctuations below
scale k

> gradual momentum integration

Z[J) = / (Hdw) ¢~ STU— Ry W+ W

» The effective action is the Legenrdre-transform of the Schwinger
functional:
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» The scale-dependece of the effective action is given by the
Wetterich-equation:
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Introduction to FRG-II

» The scale dependent coupling constants in the effective
action defines theory space

- Each point in this space is a different initial conditon for the Wetterich-

equation
- Wetterich-equation defines a flow in this space k starts at UV scale:
classical
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Solving Wetterich-equation in LPA

» The Wetteric-equation is exact, but

> it is too complicated to solve directly, because we have to use
all possible operators in the effective action.

- For practical purposes one have to use some kind of truncation

» Local potential approximation (LPA):

> LPA is based on the assumption that the
contribution of these two diagrams are close.

6 — X y

XX Xy o YEYF Y

» The LPA ansatz for the effective action:
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FRG in LPA at finte temperature
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» At finite temperature the path — -
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» Since the regulator term is time-independent,
the Wetterich-equation takes the following form in LPA:

d*p 4y
akU = _5/(277) (akRZ])G ( ) » 8kU: —%/(;z ) ak:R’L]( )(% ‘*‘nai(p())) ng(p)

> Where the Fermi-Dirac/Bose-Einstein distribution is denoted by
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- and ©:j(P) is the spectral function of the system. = T
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Solving FRG-equations numerically

» In the LPA approximation the aim is to determine the scale-

dependence of the effective potential U.
» The initial condintion: U function is given at &,

» For one scalar field at 7=0, the Wetterich-equation for the effective

potential is: , |
J kA 1

i
Uk(6) = = —
127 \/A’Q—i— OQU’?((’D)

ok

» Methods for numerically solving this equation
Newton-Raphson (more widely used)
Runge-Kutta type methods (problems with instability )

> Taylor expansion of the equation and compare the coefficients
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Solving FRG-equations at finite T

» For fermionic fields at finite temperature the Fermi-Dirac
distribution the Newton-Raphson method is non-convergent.

- Derivatives of Fermi-Dirac distribution at low temperature does not
behave well
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» Modified version of the Dormand-Price Method (adaptive
Runge-Kutta type)
- We have to deal with the instabilities in these explicite methods.
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Semi Finite Temperature Approximation

» The basic idea:

> If the running of U(¢) is given, Wetterich equation is just
an integral
- Approximate the running of U (o)
» Possible applications:
- Low temperature approximations of EoS (Compact Stars!)
> Investigation of relevant parameters in the running of the
potential

» LPA for bosonic field at finite temperature
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Using the 7=0 solution this is an

integral with parameters 7, u
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Toy model
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Yukawa potential

Coupling

» The Wetterich-equation on Finite temperature in LPA
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Properties of the toy model

» FRG equations numerically solveable

- very similar to the walecka-type models (difference in
chemical potential)

> |deal to test the semi finite temperature approximation
Results: low temperatures: very good approximation >

» Compact stars: very good approximation

P
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Semi finite approximation Enough to solve FRG
q equations at T=0

Finite T solution
The effective potential
corresponds to the Grand
potential:
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Walecka-type model
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LPA + Mean Field Approximation to the w-meson

» Wetterich-equation is very similar to the toy-model
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Numerical Solution

» Set Uto reproduce vacuum expectation value at
k=0, vev=93MeV
- k=1.3 GeV U(p) = —me + A\¢*> ¢ =
- m=1.2Gel?

° A=7.4

+ U(kmax)
. U(k=0)
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\ Maxwell-construction
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Conclusions

» Motivation:

- Exploring methods to go beyond mean field
approximation

o Quantum fluctuations can be calculated in FRG

» Future improvements:
- Coarse—grained effective action - find scale
> Introduce other interaction types in the action
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Thank you for your attention!

Péter Posfay , ELTE, Wigner

RCP 2015.10.09.



