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Motivation

o Stability of the order of the phase transition wrt approximations
Hartree-Fock: 15* X  2-Loop: 274 O(A\?) ?

e 2-Loop exponents are mean field — O(\?) truncation has Z,
might lead to non-mean field exponents

e [ransverse gap mass in the 2-Loop strongly breaks the
Goldstone theorem. Does it get better?

e IR problems in the 2-Loop O(2),: similar mechanics to what we
will see here.



Introduction to 2PI

2Pl is an exact, functional method which gives self-consistent equations
for the 1- and 2-point function.

A bilocal source is introduced in the generating functional
ZJ, K] — VK] :/D<p exp| —So— S+ -J+ ¢ K-

The 2P effective action defined through a double Legendre transform
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The physical ¢(z) and G(x, y) are determined from stationarity conditions at vanishing sources
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The 2Pl effective action has a diagrammatic expansion, which needs to be
truncated to be solved.

~v[#, G] can be written as shown in Cornwall et al., PRD 10, 2428 (1974)

116, G] = 50(6) + 5Trlog G+ T [Gy "G = 1] + 6, G

Sp is the free action,

Gy is the free propagator,

vint[@®, G| contains all the 2PI graphs constructed with vertices from Si (¢ + ).
The Tr is to be understood in all indices and as integration over coordinates.

The 1PI effective action is recovered: I'1pi[¢p] = [0, G].

O(NN) model: choosing the basis b = (¢, 0, ...,0) the propagator has the representation
G = dlag (GL, GT, cooy GT)



Equations
The 2P| effective potential, with N = N — 1 and A(O‘AJ“BB) = A(A) + BA(B)
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The field and gap equations are derived then as
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Renormalization

Renormalization is similar to that of Marko et al., PRD 87 105001 (2013). See
also Berges et al., Annals Phys. 320 344 (2005).

e Prescriptions on 2- and 4-point functions, at 7' = 7, and ¢ = 0.
e Truncation artefact: ambigous n-point functions require more counterterms.

e 3 renormalization + 6 consistency conditions (few of them are trivial) fix 9
counterterms.

e Only 2 renormalized parameters: m?, A\, and a renormalization scale T,.

e Counterterms are temperature independent, that is they are the same at
any 7.

e Compared to the 2-Loop case, there is a need for wave-function
renormalization.

e Triviality of the theory is seen through the appearance of the Landau pole, A,.
For A > A, the theory becomes unstable.



Numerics

We solve the coupled field and gap equations iteratively in Euclidean space.

We discretize the propagators ona N, x N, grid:

A
wyp =2mnT, n € [0..N, — 1], and k = (s + 1)ﬁ’ s €[0..Ns —1].

S

e Rotation invariance = only 1D in momentum space.
e Convolutions are done using FFT routines.
e Moderate cutoff values are used as both A/N, and A®/N, has to be small.

e Numerical method was developed in Marko et al., PRD 86 085031 (2012).



Light mesons in the O()\?) truncation (N = 4)

Physical parametrization requires relatively large external source (/) values, to
accomodate for Mt ~ m.,.
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e High temperature: M ~ M only in the O(\?) truncation.

e Low temperature: Only M, differs strongly and My /My < 1.



The IR problem

Chiral limit (h — 0)? Expectations set by looking back at the 2-Loop results.
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The IR problem

Chiral limit (7 = 0) in the O()\?) truncation:
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e Chiral limit: T, is missing, the gap
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Flashback: 2-Loop O(2) at finite u

Loss of solution

We define i.(T) as 0.04
— 5 5 0.035
M¢:07T?M:ﬂC(T) - 'LLC ? 0.03 | 095~
o . _ o 0.025 |
which is the inverse of T,(u). S|
= 0
~ = 0.015 | o
o 1> f.(T)— no 0o I
solution for gap eq at ¢ = 0.
0.005
e ¢.(u, T): the smallest ¢ %0 005 01 015 02 025 03 035 04 045 0.5
for which a solution /T

of the gap equations exists.

e Solution of the coupled gap
and field equations is lost

when: ¢(u, T) < ¢c(p, T).

Marko et al., PRD 90 125021 (2014)



Localized 2Pl equations: a useful tool

e Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461
(2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).

e For light modes (small masses) diagrams are dominated by the ) = 0 part of
the propagators.

e Approximate the non-local self-energy with its () = 0 part, using the gap
equations at Q = 0.



Localized 2Pl equations: a useful tool

e Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461
(2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).

e For light modes (small masses) diagrams are dominated by the ¢ = 0 part of
the propagators.

e Approximate the non-local self-energy with its () = 0 part, using the gap
equations at Q = 0.
1. Take the coupled set of the (finite) field and gap equations.

2. Compute the diagrams with the ansatze G (Q) = Q* + M7 , that is
tree-level type propagators.

3. Leads to more analytical control (e.g. through HTE) and/or faster numerics.

How do we define the finite localized equations? The original counterterms do
not renormalize the local equations.



Localized 2PI

N =1 gap equation needs more counterterms, but can be renormalized to
all orders.

Results in using the rule: replace bare parameters with renormalized ones +
replace integrals with their finite versions.

N =1 field equation OR N = 4 coupled gap equations lead to
contradictions. No constructive way to renormalize.

However the N = 1 gap equation rule is the natural way to define the finite
equations.



Localized 2PI

e N = 1 gap equation needs more counterterms, but can be renormalized to all orders.

e Results in using the rule: replace bare parameters with renormalized ones + replace
integrals with their finite versions.

e N = 1 field equation OR N = 4 coupled gap equations lead to contradictions. No
constructive way to renormalize.

e However the N = 1 gap equation rule is the natural way to define the finite equations.

The resulting localized equations:
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Localized 2PI

To remain close to our original renormalization prescription, we do subtractions
at T, :

6 = TI6) - Tie] - (7 - m2) T
BrlG] = B[G] - B.[G,],
BF[GL; GT — BGL, GT] — B*[G*] .
SIG] = SIG) - 8.0 - (0~ m) x5 TGI8,
Sr|Gr;Gr;Gr] = S[Gr;Gr;Gr] — S.[G.] — 2T[Gr] + TG L)) B.[G.]
1 dS, |G|

—2 [2(M7 —m3) + Mf, — m]

3 dm?



Check, using the 2-Loop results, N = 1:
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e Localized solution agrees quite well
with the full one.

e ¢.curves delimit regions where the
gap equation has no solution.
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e Localized equations have an
unphysical solution — we cannot rule
it out in the full, iterative method is
not decisive.



Check, using the 2-Loop results, N = 4:
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Comparison in O(\?), N = 4
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e As /1 is lowered the temperature gap e Localized unphysical solutions are
appears at the smallest Mt values. found, but not plotted here.



What can we say analytically?

Using HTE sheds some light on what is happening (N = 1 case, to keep things

simple):

e Assuming thereisa T, : M(T,) = ¢(T,) = 0, and the following equation is
satisfied

Ax

A, _ _ _
0 =m?2 + ZZTI[G) — ZSEe[G], S[G] ~ —T?%log —
9 6

However SI?C[GC] Is IR divergent = the equation is meaningless.

e The whole equation decreases as
M — 0 = at some temperature the
¢ = 0 solution will be lost: T',..

e Approaching from the broken phase one has (combining the gap and field

equations) B
_ WE _ T
2 - _ _ B[G] ~ —
¢ 3A2Br[G] — 2\, G M
which turns negative at some point signaling, that the broken phase solution
must cease to exist at some temperature: 7.




What more can we say numerically?



X X X X

Conclusions

From full 2P|

The gap equation(s) at fixed T' < T, has no solution for a range of ¢.

T_ /., are limiting temperature values above/below which ¢ enters the restricted ¢-region.
The 2-Loop also had the restricted ¢-region, ¢ never entered it though.

Whether ¢ is engulfed can be controlled by many parameters: T, h, u, ...

From localization

The shape of the curves suggest similar behaviour.
We could not find unphysical solutions in the full 2PI.
But we could not find them iteratively in the localized approx. either.

What we learned

Both approximations miss an anomalous dimension.

Therefore IR divergences are not tamed.

Could be corrected by higher orders (similarly as in the 2-Loop).
Vertex resummation needed, e.g. NLO 1/N.
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