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Motivation

• Stability of the order of the phase transition wrt approximations
Hartree-Fock: 1st 8 2-Loop: 2nd 4 O(λ2) ?

• 2-Loop exponents are mean field→ O(λ2) truncation has Z,
might lead to non-mean field exponents

• Transverse gap mass in the 2-Loop strongly breaks the
Goldstone theorem. Does it get better?

• IR problems in the 2-Loop O(2)µ: similar mechanics to what we
will see here.



Introduction to 2PI

2PI is an exact, functional method which gives self-consistent equations
for the 1- and 2-point function.

A bilocal source is introduced in the generating functional

Z[J,K] = e
W [J,K]

=

∫
Dϕ exp

[
− S0 − Sint + ϕ · J + ϕ ·K · ϕ

]
The 2PI effective action defined through a double Legendre transform

γ[φ,G] = W [J,K]−
∫
d

4
x
δW [J,K]

δJ(x)︸ ︷︷ ︸
φ(x)

J(x)−
∫
d

4
x

∫
d

4
y
δW [J,K]

δK(x, y)︸ ︷︷ ︸
[φ(x)φ(y)+G(x,y)]/2

K(x, y)

The physical φ̄(x) and Ḡ(x, y) are determined from stationarity conditions at vanishing sources
(J,K → 0)

δγ[φ,G]

δφ(x)

∣∣∣∣
φ̄(x)

= 0,
δγ[φ,G]

δG(x, y)
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Ḡ(x,y)

= 0



The 2PI effective action has a diagrammatic expansion, which needs to be
truncated to be solved.

γ[φ,G] can be written as shown in Cornwall et al., PRD 10, 2428 (1974)

γ[φ,G] = S0(φ) +
1

2
Tr logG

−1
+

1

2
Tr
[
G
−1
0 G− 1

]
+ γint[φ,G]

S0 is the free action,

G0 is the free propagator,

γint[φ,G] contains all the 2PI graphs constructed with vertices from Sint(φ+ ϕ).

The Tr is to be understood in all indices and as integration over coordinates.

The 1PI effective action is recovered: Γ1PI[φ] = γ[φ, Ḡ].

O(N) model: choosing the basis ~φ = (φ, 0, ..., 0) the propagator has the representation
G = diag (GL, GT , ..., GT ).



Equations
The 2PI effective potential, with N̂ ≡ N − 1 and λ(αA+βB)
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(B)
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]
.

The field and gap equations are derived then as

0 =
δγ[φ,GL, GT ]

δφ

∣∣∣∣
φ̄,ḠL,ḠT

=
δγ[φ,GL, GT ]

δGL

∣∣∣∣
φ,ḠL,ḠT

=
δγ[φ,GL, GT ]

δGT
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φ,ḠL,ḠT

.

And the curvature masses are defined as

M̂
2
L = 4φ̄

2
γ
′′
(φ̄

2
) + 2γ

′
(φ̄

2
) = 4φ̄

2 df(φ)

dφ
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φ̄

+ 2f(φ̄), M̂
2
T = 2γ

′
(φ̄

2
) = 2f(φ̄),

with γ(φ2) := γ[φ, ḠL, ḠT ] and f(φ) :=
1

φ

δγ[φ,GL, GT ]

δφ
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φ̄,ḠL,ḠT



Renormalization

Renormalization is similar to that of Markó et al., PRD 87 105001 (2013). See
also Berges et al., Annals Phys. 320 344 (2005).

• Prescriptions on 2- and 4-point functions, at T = T? and φ̄ = 0.

• Truncation artefact: ambigous n-point functions require more counterterms.

• 3 renormalization + 6 consistency conditions (few of them are trivial) fix 9
counterterms.

• Only 2 renormalized parameters: m2
?, λ? and a renormalization scale T?.

• Counterterms are temperature independent, that is they are the same at
any T .

• Compared to the 2-Loop case, there is a need for wave-function
renormalization.

• Triviality of the theory is seen through the appearance of the Landau pole, Λp.
For Λ > Λp the theory becomes unstable.



Numerics

We solve the coupled field and gap equations iteratively in Euclidean space.

We discretize the propagators on a Nτ ×Ns grid:

ωn = 2πnT, n ∈ [0..Nτ − 1], and k = (s+ 1)
Λ

Ns
, s ∈ [0..Ns − 1].

• Rotation invariance⇒ only 1D in momentum space.

• Convolutions are done using FFT routines.

• Moderate cutoff values are used as both Λ/Ns and Λ3/Nτ has to be small.

• Numerical method was developed in Markó et al., PRD 86 085031 (2012).



Light mesons in the O(λ2) truncation (N = 4)

Physical parametrization requires relatively large external source (h) values, to
accomodate for M̂T ≈ mπ.
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• High temperature: M̂ ≈ M̄ only in the O(λ2) truncation.

• Low temperature: Only M̂L differs strongly and M̄T/M̂T . 1.



The IR problem

Chiral limit (h→ 0)? Expectations set by looking back at the 2-Loop results.
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• 2nd order PT. • Mean field exponents. • Goldstone theorem is only
fulfilled by M̂T .



The IR problem

Chiral limit (h = 0) in the O(λ2) truncation:
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• Low h: temperature range, with NO
solution.

• Chiral limit: Tc is missing, the gap
engulfs it.



Flashback: 2-Loop O(2) at finite µ

Loss of solution
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We define µ̄c(T ) as

M̄2
φ=0,T,µ=µ̄c(T ) = µ̄2

c ,

which is the inverse of T̄c(µ).

• µ > µ̄c(T )→ no
solution for gap eq at φ = 0.

• φc(µ, T ): the smallest φ
for which a solution
of the gap equations exists.

• Solution of the coupled gap
and field equations is lost
when: φ̄(µ, T ) < φc(µ, T ).

Markó et al., PRD 90 125021 (2014)



Localized 2PI equations: a useful tool

• Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461
(2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).

• For light modes (small masses) diagrams are dominated by the Q = 0 part of
the propagators.

• Approximate the non-local self-energy with its Q = 0 part, using the gap
equations at Q = 0.



Localized 2PI equations: a useful tool

• Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461
(2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).

• For light modes (small masses) diagrams are dominated by the Q = 0 part of
the propagators.

• Approximate the non-local self-energy with its Q = 0 part, using the gap
equations at Q = 0.

1. Take the coupled set of the (finite) field and gap equations.

2. Compute the diagrams with the ansatze Ḡ−1
L,T (Q) = Q2 + M̄2

L,T , that is
tree-level type propagators.

3. Leads to more analytical control (e.g. through HTE) and/or faster numerics.

How do we define the finite localized equations? The original counterterms do
not renormalize the local equations.



Localized 2PI

• N = 1 gap equation needs more counterterms, but can be renormalized to
all orders.

• Results in using the rule: replace bare parameters with renormalized ones +
replace integrals with their finite versions.

• N = 1 field equation OR N = 4 coupled gap equations lead to
contradictions. No constructive way to renormalize.

• However the N = 1 gap equation rule is the natural way to define the finite
equations.



Localized 2PI

• N = 1 gap equation needs more counterterms, but can be renormalized to all orders.
• Results in using the rule: replace bare parameters with renormalized ones + replace

integrals with their finite versions.
• N = 1 field equation OR N = 4 coupled gap equations lead to contradictions. No

constructive way to renormalize.
• However the N = 1 gap equation rule is the natural way to define the finite equations.

The resulting localized equations:
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− λ2
?

18N2

(
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Localized 2PI

To remain close to our original renormalization prescription, we do subtractions
at T? :

TF[Ḡ] ≡ T [Ḡ]− T?[G?]− (M̄2 −m2
?)
dT?[G?]
dm2

?

,

BF[Ḡ] ≡ B[Ḡ]− B?[G?] ,
BF[ḠL; ḠT ] ≡ B[ḠL; ḠT ]− B?[G?] ,

SF[Ḡ] ≡ S[Ḡ]− S?[G?]− (M̄2 −m2
?)
dS?[G?]
dm2

?

− 3TF[Ḡ]B?[G?] ,

SF[ḠL; ḠT ; ḠT ] ≡ S[ḠL; ḠT ; ḠT ]− S?[G?]− (2T [ḠT ] + T [ḠL])B?[G?]

−1

3

[
2(M̄2

T −m2
?) + M̄2

L −m2
?

] dS?[G?]
dm2

?

.



Check, using the 2-Loop results, N = 1:
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• Localized solution agrees quite well
with the full one.

• φc curves delimit regions where the
gap equation has no solution.

• Localized equations have an
unphysical solution→ we cannot rule
it out in the full, iterative method is
not decisive.



Check, using the 2-Loop results, N = 4:
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Comparison in O(λ2), N = 1
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Comparison in O(λ2), N = 4
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What can we say analytically?
Using HTE sheds some light on what is happening (N = 1 case, to keep things
simple):

• Assuming there is a Tc : M̄(Tc) = φ̄(Tc) = 0, and the following equation is
satisfied

0 = m2
? +

λ?
2
T Tc

F [Ḡc]−
λ?
6
STc

F [Ḡc] , S[Ḡ] ∼ −T 2 log
M̄2

T 2

However STc
F [Ḡc] is IR divergent⇒ the equation is meaningless.

• The whole equation decreases as
M → 0⇒ at some temperature the
φ = 0 solution will be lost: T+.
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• Approaching from the broken phase one has (combining the gap and field
equations)

φ̄2 = − 6M̄2

3λ2
?BF[Ḡ]− 2λ?

, B[Ḡ] ∼ T

M̄
which turns negative at some point signaling, that the broken phase solution
must cease to exist at some temperature: T−.



What more can we say numerically?



Conclusions

From full 2PI

– The gap equation(s) at fixed T < Tcoal has no solution for a range of φ.
– T−/+ are limiting temperature values above/below which φ̄ enters the restricted φ-region.
– The 2-Loop also had the restricted φ-region, φ̄ never entered it though.
– Whether φ̄ is engulfed can be controlled by many parameters: T, h, µ, ...

From localization

• The shape of the curves suggest similar behaviour.
• We could not find unphysical solutions in the full 2PI.
• But we could not find them iteratively in the localized approx. either.

What we learned

× Both approximations miss an anomalous dimension.
× Therefore IR divergences are not tamed.
× Could be corrected by higher orders (similarly as in the 2-Loop).
× Vertex resummation needed, e.g. NLO 1/N .
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