Solution of the $O(N)$ model in the $\mathcal{O}\left(\lambda^{2}\right)$ truncation of 2PI: an IR problem

Gergely Markó
MTA-ELTE Statistical and Biological Physics Research Group

October 7-9, 2015, ACH triangle workshop

- Motivation
- Introduction
- The IR problem
- Conclusions

Motivation

- Stability of the order of the phase transition wrt approximations Hartree-Fock: $1^{\text {st }} \boldsymbol{X} \quad$ 2-Loop: $2^{\text {nd }} \checkmark \mathcal{O}\left(\lambda^{2}\right)$?
- 2-Loop exponents are mean field $\rightarrow \mathcal{O}\left(\lambda^{2}\right)$ truncation has Z, might lead to non-mean field exponents
- Transverse gap mass in the 2-Loop strongly breaks the Goldstone theorem. Does it get better?
- IR problems in the 2-Loop $O(2)_{\mu}$: similar mechanics to what we will see here.

Introduction to 2PI

2 PI is an exact, functional method which gives self-consistent equations for the 1- and 2-point function.

A bilocal source is introduced in the generating functional

$$
Z[J, K]=e^{W[J, K]}=\int \mathcal{D} \varphi \exp \left[-S_{0}-S_{\mathrm{int}}+\varphi \cdot J+\varphi \cdot K \cdot \varphi\right]
$$

The 2PI effective action defined through a double Legendre transform

$$
\gamma[\phi, G]=W[J, K]-\int d^{4} x \underbrace{\frac{\delta W[J, K]}{\delta J(x)}}_{\phi(x)} J(x)-\int d^{4} x \int d^{4} y \underbrace{\frac{\delta W[J, K]}{\delta K(x, y)}}_{[\phi(x) \phi(y)+G(x, y)] / 2} K(x, y)
$$

The physical $\bar{\phi}(x)$ and $\bar{G}(x, y)$ are determined from stationarity conditions at vanishing sources ($J, K \rightarrow 0$)

$$
\left.\frac{\delta \gamma[\phi, G]}{\delta \phi(x)}\right|_{\bar{\phi}(x)}=0,\left.\quad \frac{\delta \gamma[\phi, G]}{\delta G(x, y)}\right|_{\bar{G}(x, y)}=0
$$

The 2PI effective action has a diagrammatic expansion, which needs to be truncated to be solved.
$\gamma[\phi, G]$ can be written as shown in Cornwall et al., PRD 10, 2428 (1974)

$$
\gamma[\phi, G]=S_{0}(\phi)+\frac{1}{2} \operatorname{Tr} \log G^{-1}+\frac{1}{2} \operatorname{Tr}\left[G_{0}^{-1} G-1\right]+\gamma_{\mathrm{int}}[\phi, G]
$$

S_{0} is the free action,
G_{0} is the free propagator,
$\gamma_{\text {int }}[\phi, G]$ contains all the 2PI graphs constructed with vertices from $S_{\text {int }}(\phi+\varphi)$.
The Tr is to be understood in all indices and as integration over coordinates.
The 1PI effective action is recovered: $\Gamma_{1 \mathrm{PI}}[\phi]=\gamma[\phi, \bar{G}]$.
$\mathbf{O}(\mathbf{N})$ model: choosing the basis $\vec{\phi}=(\phi, 0, \ldots, 0)$ the propagator has the representation $G=\operatorname{diag}\left(G_{L}, G_{T}, \ldots, G_{T}\right)$.

Equations

The 2PI effective potential, with $\hat{N} \equiv N-1$ and $\lambda_{0,2}^{(\alpha A+\beta B)} \equiv \alpha \lambda_{0,2}^{(A)}+\beta \lambda_{0,2}^{(B)}$

$$
\begin{aligned}
& \gamma\left[\phi, G_{L}, G_{T}\right]= \frac{1}{2} \operatorname{Tr} \int_{Q}^{T}\left[\log \left(G^{-1}(Q)\right)+G_{0}^{-1}(Q) \cdot G(Q)\right]+\frac{1}{2} m_{2}^{2} \phi^{2}+\frac{\lambda_{4} \phi^{4}}{24 N} \\
&\left.+\frac{\lambda_{2}^{(A+2 B)}}{12 N} \bigcirc+\frac{\lambda_{2}^{(\hat{N} A)}}{12 N}{ }^{\prime}+\frac{\lambda_{0}^{(A+2 B)}}{24 N}\right\}+\frac{\lambda_{0}^{(\hat{N} A)}}{12 N} Q_{0}^{\left(\hat{N}^{2} A+2 \hat{N} B\right)} \\
&+\frac{\lambda_{0}}{24 N} \\
&-\frac{\lambda_{\star}^{2}}{144 N^{2}}[3 \\
& 36 N^{2}
\end{aligned}
$$

The field and gap equations are derived then as

$$
0=\left.\frac{\delta \gamma\left[\phi, G_{L}, G_{T}\right]}{\delta \phi}\right|_{\bar{\phi}, \bar{G}_{L}, \bar{G}_{T}}=\left.\frac{\delta \gamma\left[\phi, G_{L}, G_{T}\right]}{\delta G_{L}}\right|_{\phi, \bar{G}_{L}, \bar{G}_{T}}=\left.\frac{\delta \gamma\left[\phi, G_{L}, G_{T}\right]}{\delta G_{T}}\right|_{\phi, \bar{G}_{L}, \bar{G}_{T}}
$$

And the curvature masses are defined as

$$
\hat{M}_{L}^{2}=4 \bar{\phi}^{2} \gamma^{\prime \prime}\left(\bar{\phi}^{2}\right)+2 \gamma^{\prime}\left(\bar{\phi}^{2}\right)=\left.4 \bar{\phi}^{2} \frac{d f(\phi)}{d \phi}\right|_{\bar{\phi}}+2 f(\bar{\phi}), \quad \hat{M}_{T}^{2}=2 \gamma^{\prime}\left(\bar{\phi}^{2}\right)=2 f(\bar{\phi}),
$$

with $\gamma\left(\phi^{2}\right):=\gamma\left[\phi, \bar{G}_{L}, \bar{G}_{T}\right]$ and $f(\phi):=\left.\frac{1}{\phi} \frac{\delta \gamma\left[\phi, G_{L}, G_{T}\right]}{\delta \phi}\right|_{\bar{\phi}, \bar{G}_{L}, \bar{G}_{T}}$

Renormalization

Renormalization is similar to that of Markó et al., PRD 87105001 (2013). See also Berges et al., Annals Phys. 320344 (2005).

- Prescriptions on 2- and 4-point functions, at $T=T_{\star}$ and $\bar{\phi}=0$.
- Truncation artefact: ambigous n-point functions require more counterterms.
- 3 renormalization +6 consistency conditions (few of them are trivial) fix 9 counterterms.
- Only 2 renormalized parameters: $\mathbf{m}_{\star}^{2}, \boldsymbol{\lambda}_{\star}$ and a renormalization scale T_{\star}.
- Counterterms are temperature independent, that is they are the same at any T.
- Compared to the 2-Loop case, there is a need for wave-function renormalization.
- Triviality of the theory is seen through the appearance of the Landau pole, Λ_{p}. For $\Lambda>\Lambda_{\mathrm{p}}$ the theory becomes unstable.

Numerics

We solve the coupled field and gap equations iteratively in Euclidean space.
We discretize the propagators on a $N_{\tau} \times N_{s}$ grid:

$$
\omega_{n}=2 \pi n T, n \in\left[0 . . N_{\tau}-1\right], \text { and } k=(s+1) \frac{\Lambda}{N_{s}}, s \in\left[0 . . N_{s}-1\right] .
$$

- Rotation invariance \Rightarrow only 1D in momentum space.
- Convolutions are done using FFT routines.
- Moderate cutoff values are used as both Λ / N_{s} and Λ^{3} / N_{τ} has to be small.
- Numerical method was developed in Markó et al., PRD 86085031 (2012).

Light mesons in the $\mathcal{O}\left(\lambda^{2}\right)$ truncation $(\mathbf{N}=4)$

Physical parametrization requires relatively large external source (h) values, to accomodate for $\hat{M}_{T} \approx m_{\pi}$.

- High temperature: $\hat{M} \approx \bar{M}$ only in the $\mathcal{O}\left(\lambda^{2}\right)$ truncation.
- Low temperature: Only \hat{M}_{L} differs strongly and $\bar{M}_{T} / \hat{M}_{T} \lesssim 1$.

The IR problem

Chiral limit ($h \rightarrow 0$)? Expectations set by looking back at the 2-Loop results.

- $2^{\text {nd }}$ order PT.
- Mean field exponents.
- Goldstone theorem is only fulfilled by \hat{M}_{T}.

The IR problem

Chiral limit ($h=0$) in the $\mathcal{O}\left(\lambda^{2}\right)$ truncation:

- Low h : temperature range, with NO solution.
- Chiral limit: T_{c} is missing, the gap engulfs it.

Flashback: 2-Loop O(2) at finite μ

Loss of solution

We define $\bar{\mu}_{c}(T)$ as

$$
\bar{M}_{\phi=0, T, \mu=\bar{\mu}_{c}(T)}^{2}=\bar{\mu}_{c}^{2},
$$

which is the inverse of $\bar{T}_{c}(\mu)$.

- $\mu>\bar{\mu}_{c}(T) \rightarrow \mathrm{no}$
solution for gap eq at $\phi=0$.
- $\phi_{c}(\mu, T)$: the smallest ϕ for which a solution
 of the gap equations exists.
- Solution of the coupled gap and field equations is lost when: $\bar{\phi}(\mu, T)<\phi_{c}(\mu, T)$.

Localized 2PI equations: a useful tool

- Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461 (2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).
- For light modes (small masses) diagrams are dominated by the $Q=0$ part of the propagators.
- Approximate the non-local self-energy with its $Q=0$ part, using the gap equations at $Q=0$.

Localized 2PI equations: a useful tool

- Idea previously used in e.g. M. Bordag and V. Skalozub, J. Phys. A 34, 461 (2001) and U. Reinosa and Zs. Szép, Phys. Rev. D 85, 045034 (2012).
- For light modes (small masses) diagrams are dominated by the $Q=0$ part of the propagators.
- Approximate the non-local self-energy with its $Q=0$ part, using the gap equations at $Q=0$.

1. Take the coupled set of the (finite) field and gap equations.
2. Compute the diagrams with the ansatze $\bar{G}_{L, T}^{-1}(Q)=Q^{2}+\bar{M}_{L, T}^{2}$, that is tree-level type propagators.
3. Leads to more analytical control (e.g. through HTE) and/or faster numerics.

How do we define the finite localized equations? The original counterterms do not renormalize the local equations.

Localized 2PI

- $N=1$ gap equation needs more counterterms, but can be renormalized to all orders.
- Results in using the rule: replace bare parameters with renormalized ones + replace integrals with their finite versions.
- $N=1$ field equation OR $N=4$ coupled gap equations lead to contradictions. No constructive way to renormalize.
- However the $N=1$ gap equation rule is the natural way to define the finite equations.

Localized 2PI

- $N=1$ gap equation needs more counterterms, but can be renormalized to all orders.
- Results in using the rule: replace bare parameters with renormalized ones + replace integrals with their finite versions.
- $N=1$ field equation OR $N=4$ coupled gap equations lead to contradictions. No constructive way to renormalize.
- However the $N=1$ gap equation rule is the natural way to define the finite equations.

The resulting localized equations:

$$
\begin{aligned}
\bar{M}_{L}^{2}= & m_{\star}^{2}+\frac{\lambda_{\star}}{2 N}\left(\phi^{2}+\mathcal{T}_{\mathrm{F}}\left[\bar{G}_{L}\right]\right)+\hat{N} \frac{\lambda_{\star}}{6 N} \mathcal{T}_{\mathrm{F}}\left[\bar{G}_{T}\right]-\frac{\lambda_{\star}^{2} \phi^{2}}{18 N^{2}}\left(9 \mathcal{B}_{\mathrm{F}}\left[\bar{G}_{L}\right]+\hat{N} \mathcal{B}_{\mathrm{F}}\left[\bar{G}_{T}\right]\right) \\
& -\frac{\lambda_{\star}^{2}}{18 N^{2}}\left(3 \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{L}\right]+\hat{N} \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{L} ; \bar{G}_{T} ; \bar{G}_{T}\right]\right), \\
\bar{M}_{T}^{2}= & m_{\star}^{2}+\frac{\lambda_{\star}}{6 N}\left(\phi^{2}+\mathcal{T}_{\mathrm{F}}\left[\bar{G}_{L}\right]\right)+(N+1) \frac{\lambda_{\star}}{6 N} \mathcal{T}_{\mathrm{F}}\left[\bar{G}_{T}\right]-\frac{\lambda_{\star}^{2} \phi^{2}}{9 N^{2}} \mathcal{B}_{\mathrm{F}}\left[\bar{G}_{L} ; \bar{G}_{T}\right] \\
& -\frac{\lambda_{\star}^{2}}{18 N^{2}}\left(\mathcal{S}_{\mathrm{F}}\left[\bar{G}_{T} ; \bar{G}_{L} ; \bar{G}_{L}\right]+(N+1) \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{T}\right]\right), \\
\frac{h}{\bar{\phi}}= & m_{\star}^{2}+\frac{\lambda_{\star}}{6 N} \bar{\phi}^{2}+\frac{\lambda_{\star}}{2 N} \mathcal{T}_{\mathrm{F}}\left[\bar{G}_{L}\right]+\hat{N} \frac{\lambda_{\star}}{6 N} \mathcal{T}_{\mathrm{F}}\left[\bar{G}_{T}\right]-\frac{\lambda_{\star}^{2}}{18 N^{2}}\left(3 \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{L}\right]+\hat{N} \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{L} ; \bar{G}_{T} ; \bar{G}_{T}\right]\right)
\end{aligned}
$$

Localized 2PI

To remain close to our original renormalization prescription, we do subtractions at T_{\star} :

$$
\begin{aligned}
& \mathcal{T}_{\mathrm{F}}[\bar{G}] \equiv \mathcal{T}[\bar{G}]-\mathcal{T}_{\star}\left[G_{\star}\right]-\left(\bar{M}^{2}-m_{\star}^{2}\right) \frac{d \mathcal{T}_{\star}\left[G_{\star}\right]}{d m_{\star}^{2}}, \\
& \mathcal{B}_{\mathrm{F}}[\bar{G}] \equiv \mathcal{B}[\bar{G}]-\mathcal{B}_{\star}\left[G_{\star}\right], \\
& \mathcal{B}_{\mathrm{F}}\left[\bar{G}_{L} ; \bar{G}_{T}\right] \equiv \mathcal{B}\left[\bar{G}_{L} ; \bar{G}_{T}\right]-\mathcal{B}_{\star}\left[G_{\star}\right], \\
& \mathcal{S}_{\mathrm{F}}[\bar{G}] \equiv \mathcal{S}[\bar{G}]-\mathcal{S}_{\star}\left[G_{\star}\right]-\left(\bar{M}^{2}-m_{\star}^{2}\right) \frac{d \mathcal{S}_{\star}\left[G_{\star}\right]}{d m_{\star}^{2}}-3 \mathcal{T}_{\mathrm{F}}[\bar{G}] \mathcal{B}_{\star}\left[G_{\star}\right], \\
& \mathcal{S}_{\mathrm{F}}\left[\bar{G}_{L} ; \bar{G}_{T} ; \bar{G}_{T}\right] \equiv \mathcal{S}\left[\bar{G}_{L} ; \bar{G}_{T} ; \bar{G}_{T}\right]-\mathcal{S}_{\star}\left[G_{\star}\right]-\left(2 \mathcal{T}\left[\bar{G}_{T}\right]+\mathcal{T}\left[\bar{G}_{L}\right]\right) \mathcal{B}_{\star}\left[G_{\star}\right] \\
&-\frac{1}{3}\left[2\left(\bar{M}_{\mathrm{T}}^{2}-m_{\star}^{2}\right)+\bar{M}_{\mathrm{L}}^{2}-m_{\star}^{2}\right] \frac{d \mathcal{S}_{\star}\left[G_{\star}\right]}{d m_{\star}^{2}} .
\end{aligned}
$$

Check, using the 2-Loop results, $\mathrm{N}=1$:

- Localized solution agrees quite well with the full one.
- ϕ_{c} curves delimit regions where the gap equation has no solution.
- Localized equations have an unphysical solution \rightarrow we cannot rule it out in the full, iterative method is not decisive.

Check, using the 2-Loop results, $\mathrm{N}=4$:

Comparison in $\mathcal{O}\left(\lambda^{2}\right), \mathbf{N}=\mathbf{1}$

- ϕ_{c} curve meets corresponding $\bar{\phi}$ curve.
- Unphysical and physical solutions merge.
- Would-be T_{c} is in the temperature gap.
- $T_{-/+}$are defined as the lower/higher end-points of the gap.

Comparison in $\mathcal{O}\left(\lambda^{2}\right), \mathbf{N}=4$

- As h is lowered the temperature gap - Localized unphysical solutions are appears at the smallest \bar{M}_{T} values. found, but not plotted here.

What can we say analytically?

Using HTE sheds some light on what is happening ($N=1$ case, to keep things simple):

- Assuming there is a $T_{c}: \bar{M}\left(T_{c}\right)=\bar{\phi}\left(T_{c}\right)=0$, and the following equation is satisfied

$$
0=m_{\star}^{2}+\frac{\lambda_{\star}}{2} \mathcal{T}_{\mathrm{F}}^{T_{\mathrm{c}}}\left[\bar{G}_{\mathrm{c}}\right]-\frac{\lambda_{\star}}{6} \mathcal{S}_{\mathrm{F}}^{T_{\mathrm{c}}}\left[\bar{G}_{\mathrm{c}}\right], \quad \mathcal{S}[\bar{G}] \sim-T^{2} \log \frac{\bar{M}^{2}}{T^{2}}
$$

However $\mathcal{S}_{\mathrm{F}}^{T_{\mathrm{c}}}\left[\bar{G}_{\mathrm{c}}\right]$ is IR divergent \Rightarrow the equation is meaningless.

- The whole equation decreases as $M \rightarrow 0 \Rightarrow$ at some temperature the $\phi=0$ solution will be lost: T_{+}.

- Approaching from the broken phase one has (combining the gap and field equations)

$$
\bar{\phi}^{2}=-\frac{6 \bar{M}^{2}}{3 \lambda_{\star}^{2} \mathcal{B}_{F}[\bar{G}]-2 \lambda_{\star}}, \quad B[\bar{G}] \sim \frac{T}{\bar{M}}
$$

which turns negative at some point signaling, that the broken phase solution must cease to exist at some temperature: T_{-}.

What more can we say numerically?

Conclusions

From full 2PI

- The gap equation(s) at fixed $T<T_{\text {coal }}$ has no solution for a range of ϕ.
- $T_{-/+}$are limiting temperature values above/below which $\bar{\phi}$ enters the restricted ϕ-region.
- The 2-Loop also had the restricted ϕ-region, $\bar{\phi}$ never entered it though.
- Whether $\bar{\phi}$ is engulfed can be controlled by many parameters: T, h, μ, \ldots

From localization

- The shape of the curves suggest similar behaviour.
- We could not find unphysical solutions in the full 2PI.
- But we could not find them iteratively in the localized approx. either.

What we learned
\times Both approximations miss an anomalous dimension.
\times Therefore IR divergences are not tamed.
\times Could be corrected by higher orders (similarly as in the 2-Loop).
\times Vertex resummation needed, e.g. NLO $1 / N$.

